SENSORY RECEPTORS

We know about the organisation of the nervous system of vertebrates. The peripheral nervous network of the vertebrates receives information in the form of sensory signals from various sensory receptors. These sensory signals or stimulus or energy in the form of sensations or impulses are relayed to the central nervous system or brain, which interprets them as sensation.

The sensory information that is sent to the sensory receptors and sense organs may be information about the; i) quality of stimulus (such as the colour of light, static pressure, heat, cold, sweat, taste, pain, etc.) and/or ii) the intensity of stimulus (e.g. brightness, how strong) and /or iii) the spatial patterns (location, orientation, distribution).

The sensory neurons are specialized nerve cells and are also called sensory receptors. The sensory receptor functions as a transducer (a device that translates energy from one form into another). Most sensory receptors convert mechanical or light or chemical stimuli or energy into electrical impulses. These sensory receptors can detect and transmit information about the external and internal environment to the peripheral or central nervous system. The tip of the sensory nerve fiber is often associated with tissues that amplify the stimulus and thus, enhance the sensitivity of the receptor.

The various sensory receptors in the vertebrate body can be broadly classified in different ways: i) on the basis of their distribution, ii) on the basis of their location, and iii) on the basis of the kind of energy they are then able to perceive. According to these receptors can be classified and describes as follows:

1) Classification of sensory nerve receptors on the basis of their distribution in the body.

The receptors (Fig. 8.1), which are widely distributed throughout the body are termed as general sensory receptors. These receptors are involved with the sensations of touch, temperature and proprioception (perception or awareness of the position and movement of the body). General receptors maybe of three anatomical categories – (a) free or (b) encapsulated or (c) associated with nerve endings as given in Table 8.1.

Table 8.1: Classification of the General sensory organs.

S1.	Types of General Sensory	Description	
No.	receptors		
1.	Free sensory receptors	The termina lend of the sensory neuron process lacks any	
		specialized association, and so is termed as a free nerve	
		ending or free sensory receptor. At its terminus, the free	
		nerve ending may arborize (branch) in order to extensively	
		increase the area to be monitored. Free sensory receptors	
		are primarily concerned with sensations that are	
		interpreted as painful, but can also be stimulated by	
		extremes of heat or cold. Tissue damage can lead to	
		swelling and to direct stimulation of the free sensory	
		receptor.	
2.	Encapsulated sensory	In this type of receptor the terminus (terminal end) of the	
	receptors	sensory process of the neuron is enclosed or wrapped in a	
		specialized structure formed of mesodermal cells. Such a	
		type of sensory receptor is called an encapsulated sensory	
		receptor. Encapsulated sensory receptors are located in the	
		dermis of the skin just beneath the epidermis (Fig. 8.1) and	
		respond to touch and/or vibration and/or heat. For	
		example: Ruffini sensory receptors in which the nerve	
		endings are responsive to touch, pressure, vibration and	
		heat are encapsulated mechanoreceptors and are located in	
		the dermis.	
3.	Associated Sensory	When the terminus of the sensory process of the neuron is	
	receptors	wrapped around another organ, then the terminus called	
		an associated nerve ending, and sensory receptor is termed	
		as the associated sensory receptor. For example, nerve	
		endings that are associated with the base of a hair follicle	
		(Fig. 8.1). When a hair is moved, the entwined nerve	
		endings at the base of the hair are stimulated.	

Fig 8.1: General sensory receptors found in the skin

2) Classification of sensory nerve receptors on the basis of their location on/in the body.

i) Sensory receptors (Fig 8.1) that are present on the skin and/or body surface and/or skeletal muscles are called somatic receptors.

ii) Visceral sensory receptors are present in the viscera (abdominal organs).

3) Classification of sensory nerve receptors on the basis of the source from which they are stimulated

Broadly the various sensory receptors in the animal body can be classified according to the kind of energy they are able to perceive i.e. mechanical, chemical, light or thermal (Table 8.2)

Table 8.2: The sensory exteroreceptors and sensory interoreceptor of vertebrates.

1.	Exteroreceptors (External senses) that receive and	Name of the exteroreceptors
	respond to sensations from the external environment	
i.	Sight	Photoreceptors
	Hearing	Phonoreceptors
	Smell	Olfactoreceptors
	Taste	Gustatoreceptors
	Touch	Tangoreceptors
	Pressure	Mechanoreceptors
	Temperature	Thermoreceptors
	Pain	Nociceptors
	Currents of water	Rheoreceptors
2.	Interoreceptors (internal senses) that receive and respond	Name of the Interoreceptor
	to sensations from the internal environment of the body.	
i.	A special type of sensory organ that is located in the	Proprioreceptors
	striated muscles, joints and tendons.	

The information received by a single sensory receptor or the sensory receptors present in the sense organs provides the body of the vertebrate with continuous information of the constantly changing environment.