2014

MATHEMATICS

(Major)

Paper : 6.2

(Numerical Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions: 1×7=7
 - (a) What is the normalized floating point representation of real numbers?
 - (b) Define the term relative error.
 - (c) If we take $\pi = 3.14$ instead of 3.14159, find the absolute error.
 - (d) Establish the relation, $E = 1 + \Delta$.
 - (e) Write down the value of $\Delta^{n+1}x^n$
 - (f) When are Newton's interpolation formulae used?
 - (g) What is the basic principle of numerical differentiation?

2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Using normalized floating point representation, add .4546E5 and .5433E7.
- (b) Show that

$$\Delta\{\log f(x)\} = \log\left[1 + \frac{\Delta f(x)}{f(x)}\right]$$

(c) Establish the result

$$y' = \frac{dy}{dx} = \frac{1}{h} \left[\Delta y - \frac{1}{2} \Delta^2 y + \frac{1}{3} \Delta^3 y - \frac{1}{4} \Delta^4 y + \cdots \right]$$

where the symbols have their usual meanings.

- (d) Write the conditions under which (i) trapezoidal rule and (ii) Simpson's $\frac{1}{3}$ rd rule are valid.
- 3. Answer the following questions:

5×3=15

- (a) Explain the terms truncation error and round-off error with suitable examples.
- (b) Using the method of separation of symbols, prove that

$$u_1 x + u_2 x^2 + u_3 x^3 + \dots = \frac{x}{1 - x} u_1 + \frac{x^2}{(1 - x)^2} \Delta u_1 + \frac{x^3}{(1 - x)^3} \Delta^2 u_1 + \dots$$

Or

Obtain the estimate of the missing figures in the following table:

x: 1 2 3 4 5 6 7 8 f(x): 2 4 8 — 32 — 128 256

(c) Find the first derivative of the function tabulated below at the point $x = 3 \cdot 0$:

x: 3.0 3.2 3.4 3.6 3.8 4.0 f(x): -14.000 -10.032 -5.296 0.256 6.672 14.000

Or

Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) Simpson's $\frac{1}{3}$ rd rule and (ii) Simpson's $\frac{3}{8}$ th rule.

- 4. Answer either (a) or (b):
 - (a) (i) Derive the Newton's forward interpolation formula and mention when the formula gives best approximation. 4+1=5

(ii) In an examination, the number of candidates who obtained marks between certain limits were as follows:

Marks obtained	Number of candidates					
0–19	41					
20–39	62					
40–59	65					
60–79	50					
80–99	17					

Estimate the number of candidates who obtained less than 70 marks.

(b) (i) State and derive Stirling's central difference formula. Hence or otherwise establish Bessel's formula. 3+3=6

(ii) Apply Bessel's formula to obtain y_{25} , given $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.

5. Answer either (a) or (b):

(a) Explain briefly the idea of numerical integration. Establish the general quadrature formula and deduce trapezoidal rule from it. 2+5+3=10

5

4

(b)	(i)	The v								
		which								
		fixed		rvals	of	time	e t ((min)	as	
		follow	s:							
t	:	2 4	6	8	10	12	14	16	18	20
		10 18								0
		Estim	ate	a	ppro	xim	ately	,	the	
		distar	ice i	cover	red	in 2	20 1	ninu	tes.	
		using								. !
	(ii)	Comp	ute	the	inte	gral	\int_{5}^{12}	$\frac{1}{x}dx$	by	
		apply	ing	Ga	uss	's	aus	adrat	ure	
		formu	ıla.				qui	aur u	urc	
Ansv	wer	either	(a) or	r (b)	:					
(a)	(i)	State	the	Newt	on-I	Raph	son	form	ıula	
		and								
		preta								
	(ii)	Find			of	th	e .	20110	tion	
	(00)	$x^3 - 4$								
		meth								
				OTTE		.0 10	Jur	deci	mal	446
	5.148	place	S.							
(b)	(i)	State	the	cond	lition	n of	conv	verge	nce	

of Newton-Raphson method.

6.

1

(ii) Derive $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for determining the square root of a > 0, using Newton-Raphson formula.

2

(iii) Show that the equation $x^2 + \log x = 0$ has exactly one root and the root lies in the interval $[\frac{1}{3}, 1]$.

2

(iv) Find a real root of the equation $x^3 - 2x - 5 = 0$ by the method of false position correct to three decimal places.

5