2014

PHYSICS

(Major)

Paper : 6.3

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

(Modern Optics)

- 1. Answer the following question/Choose the correct option: 1×4=4
 - (a) What is known as cladding of a fibre?
 - (b) Huygens' eyepiece consists of two plano-convex lenses of focal lengths
 - (i) 3f and f, separated by 2f/3
 - (ii) 3f and f, separated by 2f
 - (iii) f and f, separated by 3f/2
 - (iv) None of the above

- (c) Light amplification by stimulated emission of radiation is known as
 - (i) light amplifier
 - (ii) maser
 - (iii) laser
 - (iv) None of the above
- (d) Holography was originally an idea of
 - (i) Gabor
 - (ii) Snitzer
 - (iii) Leith
 - (iv) Maima
- 2. (a) What is an eyepiece? Why should it consist of two lenses?
 - (b) Draw the schematic diagram of propagation of a ray in step index fibre.
 - (c) Given refractive indices of the core and cladding of an optical fibre to be $n_1 = 1.48$ and $n_2 = 1.46$ respectively. Obtain the magnitude of the numerical aperture. 2+2+2=6

A	
5	
	5

5

3. Describe the principle of He-Ne laser.

Or

Outline the main characteristics of laser light.

4. Write a short note on any *one* of the following:

(a) Grating spectrograph

- (b) Principle of liquid crystal display (LCD) /
- 5. What is holography? Describe the basic principles of construction and reconstruction of holography.
 2+4+4=10

Or

Describe the principle and construction of an optical fibre. Obtain the expression for its numerical aperture. 5+5=10

6. Outline the basic characteristics of non-linear optics. Describe its application in self-focussing of light beam and second harmonic generation. 2+4+4=10

Or

Give the construction and the working principle of a Ramsden's eyepiece and find its cardinal points. 5+5=10

7. Answer the following:

 $1 \times 3 = 3$

2

5

- (a) State the condition of the field for which the displacement current becomes zero.
- (b) Write the expression for speed of electromagnetic waves in free space.
- (c) How are electromagnetic waves produced?
- 8. What oscillates in e.m. waves? Give two examples of e.m. waves.
- **9.** Establish the equation of continuity in electromagnetic theory and discuss its significance.

Or

State and prove Poynting's theorem.

 Derive wave equation in a conducting medium from Maxwell's electromagnetic field equation.

10

Or

Assuming the electric vector to lie in the plane of incidence, calculate the reflection coefficient. Hence, prove Brewster's law.

