2017

PHYSICS

(Major)

-Paper : 5.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods)

(Marks: 30)

- 1. Answer the following questions: iq colix4=4

 (a) Give the Euler's formula

 - (b) For the complex number z = 3 - 4i, find z^4 , given that $\tan^{-1} \frac{4}{3} = 53 \cdot 13^\circ$.
 - Plot the number $e^{(1+\frac{\pi}{4}i)}$. (c)
 - (d) What is Argand plane or complex plane?

(a)	State De Moivre's theorem.	2
(b)	Using De Moivre's theorem, show that $e^{in\theta} = \cos n\theta + i\sin n\theta$.	2
(a)	Examine whether the function $f(z) = (x + iy)^3$ is an analytic function or not.	3
(b)	Prove that $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.	2
	Cramin Or shirt was a second	
	Check the analyticity of the function $f(z) = \ln z$ and hence find its derivative.	5
(a)	State and prove Cauchy's integral theorem.	6
(b)	Using Cauchy's integral formula, evaluate $\int \frac{z-1}{z^2+1} dz$ around the	
	contours—	
	(i) $ z-i =1$ (ii) $ z =2$ $2+2=$	
Ans	wer either (a) and (b) or (c) and (d):	
(a)	State and prove Taylor's theorem.	5
(b)	Evaluate $\oint \frac{dz}{c^2}$, where c is a circle of unit	
enn		2
73	(Continued)
	(b) (a) (b) Ans (a) (b)	 (a) Examine whether the function f(z) = (x + iy)³ is an analytic function or not. (b) Prove that z₁·z₂ = z₁·z₂. Or Check the analyticity of the function f(z) = ln z and hence find its derivative. (a) State and prove Cauchy's integral theorem. (b) Using Cauchy's integral formula, evaluate ∫ z-1/z²+1 dz around the contours— (i) z-i =1 (ii) z =2 Answer either (a) and (b) or (c) and (d): (a) State and prove Taylor's theorem. (b) Evaluate ∫ dz/z, where c is a circle of unit radius.

8A/273

- (c) Obtain the residue of the function $f(z) = \frac{e^{iz}}{x^2 + a^2} \text{ at } z = ia.$
- (d) Evaluate the given definite integral by the calculus of residues $\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + a^2)^2}$.

GROUP-B

(Classical Mechanics)

(Marks : 30)

- 6. Answer the following questions: 1×4=4
 - (a) What do you mean by constraints?
 - (b) What is a central force?
 - (c) What do you mean by a cyclic coordinate?
 - (d) What is areal velocity of a particle?
- 7. Answer any *three* of the following questions: 2×3=6
 - (a) What are generalized coordinates?
 - (b) Define virtual displacement and discuss its significance.

- (c) Distinguish between Lagrangian and Hamiltonian formalisms.
 - (d) Define reduced mass in the context of two-body central force problem.
 - (e) Show that angular momentum is a constant of central force motion.
- 8. (a) State and establish d'Alembert's principle.

Or

Define Hamiltonian of a system. Under what conditions is it equivalent to energy? 1+3=4

- (b) Show that a two-body central force problem can be reduced to one-body problem.
- (c) Establish the Hamiltonian and hence the equation of motion of a simple pendulum.

Or

Establish the differential equation for the orbit under central force.

5

5

8A/273

(Continued)

9. Find the equation of motion of a compound pendulum by using Lagrange's equation. Hence find an expression for period of oscillation for the pendulum.
5+2=7

Or

Derive Lagrange's equation of motion from Hamilton's principle for a conservative system.

* * *

7